Assalamu'alaikum teman teman....
kali ini kita akan mempelajari tentang program linier matematika sma. materi ini memepelajari bagaimana mencari nilai maksimum/atau minimum dari suatu proses . oke, mari kita lihat pembahasannya.
soal pertama,,,
Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp 6.000.000,00/unit dan tipe B adalah Rp 4.000.000,00/unit. Keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut adalah ........
jawaban,,,
misal:
x = rumah tipe A
y = rumah tipe B
100x + 75y ≤ 10.000 ⇒dibagi 25 --> 4x + 3y ≤ 400 …..(1)
x + y ≤ 125 …..(2)
Keuntungan maksimum : 6000.000 x + 4000.000 y =…?
Mencari keuntungan maksimum dengan mencari titik-titik pojok dengan menggunakan
sketsa grafik:
Grafik 1 :
4x + 3y ≤ 400
titik potong dengan sumbu X jika y=0 maka x =400/4= 100
Titik potongnya (100 , 0)
Titik potong dengan sumbu Y jika x = 0 maka y =400/3= 133,3
Titik potongnya (0 , 133,3)
Grafik 2 :
x + y ≤ 125
titik potong dengan sumbu X jika y=0 maka x = 125
Titik potongnya (125 , 0)
Titik potong dengan sumbu Y jika x = 0 maka y = 15
Titik potongnya (0 , 125)
Gambar grafiknya:
tik potong :
eliminasi x
4x + 3y = 400 x 1 ⇒ 4x + 3y = 400
x + y = 125 x 4 ⇒ 4x + 4y = 500 -
-y = -100
y = 100
x + y = 125
x = 125 - y
= 125 – 100 = 25 --> didapat titik potong (25, 100)
Titik pojok 6000.000 x + 4000.000 y
(100,0) 600.000.000
(0,125) 500.000.000
(25, 100) 150.000.000+ 400.000.000 = 550.000.000
Keuntungan maksimum adalah Rp.600.000.000
soal kedua,,,,
Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak.
Pedagang tersebut membeli mangga dengan harga Rp. 8.000,00/kg dan pisang Rp.
6.000,00/kg. Modal yang tersedia Rp. 1200.000,00 dan gerobaknya hanya dapat
memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp.9200,00/kg
dan pisang Rp.7000,00/kg, maka laba maksimum yang diperoleh adalah…..
Jawab:
Misal : x = mangga ; y = pisang
Model matematikanya:
x ≥ 0 ; y≥ 0
8000x + 6000y ≤ 1200.000 --> dibagi 2000
⇔ 4x + 3y ≤ 600 ….(1)
x + y ≤ 180 ….(2)
Laba penjualan mangga = 9200 – 8000 = 1200
Laba penjualan pisang = 7000 – 6000 = 1000
Laba maksimum = 1200x + 1000y
maka grafiknya,,,
Titik potong:
Dari pers (1) dan (2)
eliminasi x
4x + 3y = 600 x1 ⇒ 4x + 3y = 600
x + y = 180 x4 ⇒ 4x + 4y = 720 -
- y = - 120
y = 120
x + y = 180
x = 180 – 120 = 60
titik potong = (60,120)
Titik pojok 1200x + 1000y
(0, 0) 0
(150, 0) 180.000
(60, 120) 192.000
(0, 180) 180.000
Laba maksimum adalah 192.000
untuk soal no 3,,,
Luas daerah parkir 1.760 m2. Luas rata – rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp.1.000,00/jam dan mobil besar Rp. 2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak kendaraan yang pergi dan datang, maka hasil maksimum tempat parkir itu adalah ….
jawabannya,,,
misal x = mobil kecil dan y = mobil besar, maka dapat dibuat persamaan sbb:
4 x + 20 y ≤ 1760 ⇒ x + 5 y ≤ 440 …(1)
x + y ≤ 200 …(2)
dari pers (1) dan (2)
eliminasi x
x + 5 y = 440
x + y = 200 -
4 y = 240
y = 240/4
= 60
x + y = 200
x + 60 = 200
x = 200 – 60 = 140
maka hasil maksimum
1000 x + 2000 y = 1000. 140 + 2000. 60 = 140000 + 120000 = Rp. 260.000,-
Tidak ada komentar:
Posting Komentar